JACoW logo

Journals of Accelerator Conferences Website (JACoW)

JACoW is a publisher in Geneva, Switzerland that publishes the proceedings of accelerator conferences held around the world by an international collaboration of editors.

BiBTeX citation export for WEPFAV004: Status of the Cryogenic Infrastructure for MESA

  author       = {T. Stengler and K. Aulenbacher and F. Hug and D. Simon},
  title        = {{Status of the Cryogenic Infrastructure for MESA}},
  booktitle    = {Proc. SRF'21},
% booktitle    = {Proc. 20th International Conference on RF Superconductivity (SRF'21)},
  pages        = {539--543},
  eid          = {WEPFAV004},
  language     = {english},
  keywords     = {cryomodule, cryogenics, experiment, SRF, operation},
  venue        = {East Lansing, MI, USA},
  series       = {International Conference on RF Superconductivity},
  number       = {20},
  publisher    = {JACoW Publishing, Geneva, Switzerland},
  month        = {10},
  year         = {2022},
  issn         = {2673-5504},
  isbn         = {978-3-95450-233-2},
  doi          = {10.18429/JACoW-SRF2021-WEPFAV004},
  url          = {https://jacow.org/srf2021/papers/wepfav004.pdf},
  abstract     = {{The Institute of Nuclear Physics at the Johannes Gutenberg University Mainz, Germany is currently constructing the Mainz Energy-recovering Superconducting Accelerator (MESA). The centerpiece of the MESA consists of two superconducting cryomodules of the ELBE/Rossendorf type, which are operated at 1.8 K. Furthermore, accelerator elements for polarimetry, a 10 T solenoid, and the external SRF test facility of the Helmholtz Institute Mainz have to be supplied with 4 K helium. One challenge here is to supply the components located throughout the accelerator according to their requirements and to establish a 16mbar system for 1.8 K operation. To ensure the required supply of helium at the different temperature levels, the existing helium liquefier has to be upgraded. The cryogenic infrastructure has to be adapted to the accelerator. The concept of the future cryogenic distribution network is presented in this paper and the design of the cryogenic facilities including the modifications is described in detail.}},