Author: Bice, D.J.
Paper Title Page
MOPTEV012 Extra-Cold EP Process at Fermilab 230
 
  • F. Furuta, D.J. Bice, M. Martinello, T.J. Ring
    Fermilab, Batavia, Illinois, USA
 
  FNAL has established a cold Electro-Polishing (EP) method which maintains the outer surface temperature of cavity cell around 12~15°C during EP process. Cold EP has been applied on the various SRF cavities and contributed to achieve high RF performances with them. To investigate more feasibility and capability of EP at lower temperature, the FNAL EP temperature control tool was recently improved. Extra-cold EP process below 0°C at cavity cell region was successfully performed on 1.3 GHz 1-cell cavity. A compatible RF performance with cold EP method was also demonstrated during the cavity vertical testing. The details of extra-cold EP process and the cavity test results will be presented.  
poster icon Poster MOPTEV012 [2.034 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2021-MOPTEV012  
About • Received ※ 21 June 2021 — Accepted ※ 14 December 2021 — Issue date; ※ 16 May 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPCAV005 Toward Qualifications of HB and LB 650MHz Cavities for the Prototype Cryomodules for the PIP-II Project 448
 
  • M. Martinello, D.J. Bice, C. Boffo, S.K. Chandrasekaran, G.V. Eremeev, F. Furuta, T.N. Khabiboulline, K.E. McGee, A.V. Netepenko, J.P. Ozelis, A.I. Sukhanov, G. Wu
    Fermilab, Batavia, Illinois, USA
  • M. Bagre, V. Jain, A. Puntambekar, S. Raghvendra, P. Shrivastava
    RRCAT, Indore (M.P.), India
  • M. Bertucci, A. Bosotti, C. Pagani, R. Paparella
    INFN/LASA, Segrate (MI), Italy
  • P. Bhattacharyya, S. Ghosh, S. Ghosh, A. Mandal, S. Seth, S. Som
    VECC, Kolkata, India
  • M.P. Kelly, T. Reid
    ANL, Lemont, Illinois, USA
  • S.H. Kim, K.E. McGee, P.N. Ostroumov
    FRIB, East Lansing, Michigan, USA
  • K.K. Mistri, P.N. Prakash
    IUAC, New Delhi, India
 
  High-beta (HB) and low-beta (LB) 650 MHz cryomodules are key components of the Proton Improvement Plan II (PIP-II) project. In this contribution we present the results of several 5-cell HB650 cavities that have been processed and tested with the purpose of qualifying them for the prototype cryomodule assembly, which will take place later this year. We also present the first results obtained in LB650 single-cell cavities process optimization. Taking advantage of their very similar geometry, we are also analyzing the effect of different surface treatments in FRIB’s 5-cell medium-beta 644MHz cavities. Cavities processed with N-doping and mid-T baking showed very promising results in term of both Q-factors and accelerating gradient for these low-beta structures.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2021-TUPCAV005  
About • Received ※ 01 July 2021 — Accepted ※ 02 November 2021 — Issue date; ※ 16 May 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTEV003 LCLS-II Cryomodules Production Experience and Lessons Learned Towards LCLS-II-HE Project 832
 
  • T.T. Arkan, D.J. Bice, J.N. Blowers, C.J. Grimm, B.D. Hartsell, J.A. Kaluzny, M. Martinello, T.H. Nicol, Y.O. Orlov, S. Posen, K.S. Premo, R.P. Stanek
    Fermilab, Batavia, Illinois, USA
 
  Funding: DOE
LCLS-II is an upgrade project for the linear coherent light source (LCLS) at SLAC. The LCLS-II linac consists of thirty-five 1.3 GHz and two 3.9 GHz superconducting RF (SRF) continuous wave (CW) cryomodules with high quality factor cavities. Cryomodules were produced at Fermilab and at Jefferson Lab in collaboration with SLAC. Fermilab successfully completed the assembly, testing and delivery of seventeen 1.3 GHz and three 3.9 GHz cryomodules. LCLS-II-HE is a planned upgrade project to LCLS-II. The LCLS-II-HE linac will consist of twenty-three 1.3 GHz cryomodules with high gradient and high quality factor cavities. This paper presents LCLS-II-HE cryomodule production plans, emphasizing the improvements done based on the challenges, mitigations, and lessons learned from LCLS-II.
 
poster icon Poster THPTEV003 [0.615 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2021-THPTEV003  
About • Received ※ 21 June 2021 — Revised ※ 11 August 2021 — Accepted ※ 21 August 2021 — Issue date ※ 27 October 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)