Author: Boffo, C.
Paper Title Page
MOOFAV05 Proton Improvement Plan ’ II: Overview of Progress in the Construction 182
 
  • A.L. Klebaner, C. Boffo, S.K. Chandrasekaran, D. Passarelli, G. Wu
    Fermilab, Batavia, Illinois, USA
 
  Funding: US Department of Energy
The Proton Improvement Plan II (PIP-II) project is an essential upgrade to Fermilab’s particle accelerator complex to enable the world’s most intense neutrino beam for LBNF/DUNE and a broad particle physics program for many decades to come. PIP-II will deliver 1.2 MW of proton beam power from the Main Injector, upgradeable to multi-MW capability. The central element of PIP-II is an 800 MeV linac, which comprises a room temperature front end followed by an SRF accelerator. The front end has been constructed and operated with (pulsed & CW) beam in the PIP-II Injector Test facility (PIP2IT). The SRF accelerator consists of five different types of cavities/cryomodules, including Half Wave Resonators (HWR), Single Spoke and elliptical resonators operating at state-of-the-art parameters. The first two PIP-II cryomodules, HWR and Single Spoke Resonator 1 (SSR1) are installed in PIP2IT and have accelerated beam to 17 MeV. PIP-II is the first U.S. accelerator project that will be constructed with significant contributions from international partners, including India, Italy, France, United Kingdom and Poland. The project was recently baselined, and site construction is underway
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2021-MOOFAV05  
About • Received ※ 13 August 2021 — Revised ※ 14 January 2022 — Accepted ※ 21 February 2022 — Issue date ※ 13 March 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPCAV005 Toward Qualifications of HB and LB 650MHz Cavities for the Prototype Cryomodules for the PIP-II Project 448
 
  • M. Martinello, D.J. Bice, C. Boffo, S.K. Chandrasekaran, G.V. Eremeev, F. Furuta, T.N. Khabiboulline, K.E. McGee, A.V. Netepenko, J.P. Ozelis, A.I. Sukhanov, G. Wu
    Fermilab, Batavia, Illinois, USA
  • M. Bagre, V. Jain, A. Puntambekar, S. Raghvendra, P. Shrivastava
    RRCAT, Indore (M.P.), India
  • M. Bertucci, A. Bosotti, C. Pagani, R. Paparella
    INFN/LASA, Segrate (MI), Italy
  • P. Bhattacharyya, S. Ghosh, S. Ghosh, A. Mandal, S. Seth, S. Som
    VECC, Kolkata, India
  • M.P. Kelly, T. Reid
    ANL, Lemont, Illinois, USA
  • S.H. Kim, K.E. McGee, P.N. Ostroumov
    FRIB, East Lansing, Michigan, USA
  • K.K. Mistri, P.N. Prakash
    IUAC, New Delhi, India
 
  High-beta (HB) and low-beta (LB) 650 MHz cryomodules are key components of the Proton Improvement Plan II (PIP-II) project. In this contribution we present the results of several 5-cell HB650 cavities that have been processed and tested with the purpose of qualifying them for the prototype cryomodule assembly, which will take place later this year. We also present the first results obtained in LB650 single-cell cavities process optimization. Taking advantage of their very similar geometry, we are also analyzing the effect of different surface treatments in FRIB’s 5-cell medium-beta 644MHz cavities. Cavities processed with N-doping and mid-T baking showed very promising results in term of both Q-factors and accelerating gradient for these low-beta structures.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2021-TUPCAV005  
About • Received ※ 01 July 2021 — Accepted ※ 02 November 2021 — Issue date; ※ 16 May 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)