Author: Cheng, G.
Paper Title Page
MOPCAV001 Cavity Production and Testing of the First C75 Cryomodule for CEBAF 250
 
  • G. Ciovati, G. Cheng, E. Daly, G.K. Davis, M.A. Drury, J.F. Fischer, D. Forehand, K. Macha, F. Marhauser, E.A. McEwen, A.L.A. Mitchell, A.V. Reilly, R.A. Rimmer, S. Wang
    JLab, Newport News, Virginia, USA
 
  Funding: U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177.
The CEBAF cryomodule rework program was updated over the last few years to increase the energy gain of refurbished cryomodules to 75 MeV. The concept recycles the waveguide end-groups from original CEBAF cavities fabricated in the 1990s and replaces the five elliptical cells in each with a new optimized cell shape fabricated from large-grain, ingot Nb material. Eight cavities were fabricated at Research Instruments, Germany, and two cavities were built at Jefferson Lab. Each cavity was processed by electropolishing and tested at 2.07 K. The best eight cavities were assembled into ’cavity pairs’ and re-tested at 2.07 K, before assembly into the cryomodule. All but one cavity in the cryomodule were within 10% of the target accelerating gradient of 19 MV/m with a quality factor of 8·109. The performance limitations were field emission and multipacting.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2021-MOPCAV001  
About • Received ※ 17 June 2021 — Accepted ※ 21 February 2022 — Issue date; ※ 10 April 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTEV014 Managing Procurements in the Time of Covid-19: SNS-PPU as a Case Study 863
 
  • K.M. Wilson, G. Cheng, E. Daly, N.A. Huque, T. Huratiak, M. Laney, K. Macha, D.J. Maddox, M. Marchlik, P.D. Owen, T. Peshehonoff, M. Torres, M. Wiseman
    JLab, Newport News, Virginia, USA
 
  Funding: Supported by the Dept of Energy, Office of Nuclear Physics under contract DE-AC05-06OR23177 (JSA); and by UT-B which manages Oak Ridge National Laboratory under contract DE-AC05-00OR22725.
In early 2020, COVID-19 swept across the world. The accelerator industry, like many others, was impacted by disease, delays, shortages, and new working conditions. All Thomas Jefferson National Accelerator Facility (JLab) employees were sent home in mid-March 2020, with many still working remotely now. At the time, JLab was working on the Proton Power Upgrade (PPU) to the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL). Procurements had been placed and were being managed, parts were being received and inspected. This paper details the JLab procurement plan for the SNS PPU project, and the mitigations that were developed to continue to support this project smoothly under the limitations imposed by COVID-19.
 
poster icon Poster THPTEV014 [1.076 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2021-THPTEV014  
About • Received ※ 15 June 2021 — Revised ※ 30 November 2021 — Accepted ※ 21 January 2022 — Issue date ※ 01 May 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)