Author: Côté, C.
Paper Title Page
THPTEV015 Cylindrical Magnetron Development for Nb3sn Deposition via Magnetron Sputtering 868
 
  • Md.N. Sayeed, H. Elsayed-Ali
    ODU, Norfolk, Virginia, USA
  • C. Côté, M.A. Farzad, A. Sarkissian
    PLASMIONIQUE Inc., Varennes, Québec, Canada
  • G.V. Eremeev
    Fermilab, Batavia, Illinois, USA
  • A-M. Valente-Feliciano
    JLab, Newport News, Virginia, USA
 
  Funding: This work was supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Contract No. DE-AC05-06OR23177.
Due to its better superconducting properties (critical temperature Tc~ 18.3 K, superheating field Hsh~ 400 mT), Nb3Sn is considered as a potential alternative to niobium (Tc~ 9.25 K, Hsh~ 200 mT) for superconducting radiofrequency (SRF) cavities for particle acceleration. Magnetron sputtering is an effective method to produce superconducting Nb3Sn films. We deposited superconducting Nb3Sn films on samples with magnetron sputtering using co-sputtering, sequential sputtering, and sputtering from a stoichiometric target. Nb3Sn films produced by magnetron sputtering in our previous experiments have achieved DC superconducting critical temperature up to 17.93 K and RF superconducting transition at 17.2 K. A magnetron sputtering system with two identical cylindrical cathodes that can be used to sputter Nb3Sn films on cavities has been designed and is under development now. We report on the design and the current progress on the development of the system.
 
poster icon Poster THPTEV015 [1.126 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2021-THPTEV015  
About • Received ※ 22 June 2021 — Revised ※ 12 August 2021 — Accepted ※ 21 August 2021 — Issue date ※ 27 September 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)