Author: Kim, Y.
Paper Title Page
MOOFAV02 Status of the RAON Superconducting Linear Accelerator 175
 
  • Y.U. Sohn, T.Y. Ki, Y. Kim, M. Lee, K.T. Seol
    IBS, Daejeon, Republic of Korea
 
  Funding: Ministry of Science and ICT (MSIT)
RAON, being constructed as the Rare Isotope Science Project (RISP) by the Institute for Basic Science (IBS) since 2011 is a flagship heavy ion accelerator facility in Korea to promote fundamental science and application of isotope nuclei and related science. The installation of the heavy ion accelerator systems including injector, rare isotope (RI) production systems, and experimental systems are currently being progressed toward to commissioning of RAON, while the civil construction of the RAON site in Shindong, Daejeon of Korea, is going to finish in 2021. The superconducting LINAC with low energy, so-call SCL3 as the 1st phase will be commissioned on the December of 2021. The overview RAON accelerator facility and status of RISP are reported in this paper.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2021-MOOFAV02  
About • Received ※ 26 August 2021 — Accepted ※ 05 April 2022 — Issue date; ※ 16 May 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPCAV011 Fabrication Process of Single Spoke Resonator Type-2 (SSR2) for RISP 283
 
  • M.O. Hyun, J. Joo, H.C. Jung, Y. Kim
    IBS, Daejeon, Republic of Korea
 
  Funding: This paper was supported by the Rare Isotope Science Project (RISP), which is funded by the Ministry of Science and ICT (MSIT) and National Research Foundation (NRF) of the Republic of Korea.
Rare Isotope Science Project (RISP) in the Institute of Basic Science (IBS), South Korea, is now constructing superconducting linear accelerator 3 (SCL3) for low-energy beam experiment and also making prototypes of superconducting cavity, RF power coupler, tuner, and cryomodule of superconducting (SC) linear accelerator 2 (SCL2) for high-energy beam experiment. Single spoke resonator type-1 (SSR1) and type-2 (SSR2) superconducting cavities are now on the prototyping stage. This paper explains about SSR2 fabrication process from press-forming to electron beam welding (EBW) with RRR300 niobium sheets.
 
poster icon Poster MOPCAV011 [1.949 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2021-MOPCAV011  
About • Received ※ 22 June 2021 — Revised ※ 26 August 2021 — Accepted ※ 26 August 2021 — Issue date ※ 22 April 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPFAV002 Fabrication and Installation of Newly Designed Cryostats and Top Flanges for the Vertical Test of RISP 733
 
  • M.O. Hyun, M.S. Kim, Y. Kim, J. Lee, M. Lee, J.H. Shin
    IBS, Daejeon, Republic of Korea
  • D.W. Kim, S.R. Kim
    CVE, Suwon, Gyeonggi, Republic of Korea
 
  Funding: This paper was supported by the Rare Isotope Science Project (RISP), which is funded by the Ministry of Science and ICT (MSIT) and National Research Foundation (NRF) of the Republic of Korea.
Rare Isotope Science Project (RISP) in the Institute of Basic Science (IBS), South Korea, is now operating SRF test facility in Sindong, Daejeon. Sindong SRF test facility has three vertical test pits and three horizontal test bunkers, 900 W cryogenic system, RF power system, and radiation protection system. This paper explains about detail procedures of constructing cryostats and top flanges for the vertical test of RISP, Installed cryostats and top flanges have insulation vacuum layer, magnetic and thermal shield, 4K/2K reservoir, heat exchanger, cryogenic valves for supplying liquid helium, vacuum lines, and electrical instrumentations for the superconducting cavity tests.
 
poster icon Poster THPFAV002 [2.010 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2021-THPFAV002  
About • Received ※ 22 June 2021 — Revised ※ 21 August 2021 — Accepted ※ 23 October 2021 — Issue date ※ 22 November 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPCAV001 Modal Analysis and Vibration Test of Single Spoke Resonator Type-1 (SSR1) for RISP 776
 
  • M.O. Hyun, Y.W. Jo, H.C. Jung, Y. Kim, M. Lee
    IBS, Daejeon, Republic of Korea
 
  Funding: This paper was supported by the Rare Isotope Science Project (RISP), which is funded by the Ministry of Science and ICT (MSIT) and National Research Foundation (NRF) of the Republic of Korea.
Rare Isotope Science Project (RISP) is developing the single spoke resonator type-1 (SSR1) and type-2 (SSR2) for making superconducting linear accelerator 2 (SCL2). For optimizing of SSR1 and SSR2, we should research every aspects of superconducting cavity including RF performances and mechanical properties. This paper explains about modal analysis of SSR1 using FEM (finite element method) applying material properties of RRR300 niobium for bare cavity and STS316L for liquid helium jacket. Also, this paper shows the vibration test results with modal analysis.
 
poster icon Poster THPCAV001 [1.636 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2021-THPCAV001  
About • Received ※ 22 June 2021 — Accepted ※ 06 September 2021 — Issue date; ※ 15 May 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTEV008 Development of a Digital LLRF System for SRF Cavities in RAON Accelerator 845
 
  • H. Jang, D.H. Gil, Y. Jung, H. Kim, Y. Kim, M. Lee
    IBS, Daejeon, Republic of Korea
 
  An ion accelerator, RAON is planned and under construction in Daejeon, Korea by Rare Isotope Science Project (RISP) team in Institute of Basic Science (IBS). The purpose of this accelerator is the generation of rare isotope by ISOL (Isotope Separation On-Line) and IF (In-flight Fragmentation) method. To achieve this goal RAON adopted the superconducting cavities at three different frequency (81.25 MHz, 162.5 MHz and 325 MHz) and their RF field will be controlled independently for the acceleration of ions with various A/q. A solid state power amplifier and a low level RF (LLRF) controller pairs are under development to generate and to control the RF for the cavities. Recently the development and evaluation of the digital-based LLRF have been performed. For the operation and test of SRF cavities, self-excited loop (SEL) and generator-driven-resonator (GDR) algorithm is digitally implemented and its test was performed. In this paper the status and test result of RAON LLRF controller will be described.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2021-THPTEV008  
About • Received ※ 21 June 2021 — Revised ※ 30 August 2021 — Accepted ※ 26 September 2021 — Issue date ※ 23 November 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)