Author: Lu, L.
Paper Title Page
SUPCAV014 Design and Simulation of 500 MHz Single Cell Superconducting Cavity 46
 
  • Y.B. Sun, W. Ma
    Sun Yat-sen University, Zhuhai, Guangdong, People’s Republic of China
  • L.G. Liu
    SSRF, Shanghai, People’s Republic of China
  • L. Lu, L. Yang, Z. Zhang
    IMP/CAS, Lanzhou, People’s Republic of China
 
  Funding: Work supported by Shenzhen Development and Reform Commis-sion
The Shenzhen Industrial Synchrotron Radiation Light Source is a fourth-generation medium-energy light source with a 3GeV storage ring electron energy and an emit-tance less than 100 pm·rad. In order to ensure the long-term stable and efficient operation of the light source, a new type of 500 MHz single-cell superconducting cavity was designed in this study to be used as a pre-research superconducting cavity for the Light Source. The 500 MHz superconducting cavity has a large beam aperture and low high order modes (HOMs) impedance, which can be used in accelerators with larger currents. In this design, we simply adopted the same design scheme as the KEKB-type and CESR-type superconducting cavity. Using CST electromagnetic field simulation software to calculate and simulate the characteristics of the cavity, the results show that the designed 500 MHz single-cell cavity can meet the requirements of a high acceleration gradient, a high r/Q value, and a low peak surface field.
 
poster icon Poster SUPCAV014 [0.420 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2021-SUPCAV014  
About • Received ※ 21 June 2021 — Revised ※ 07 July 2021 — Accepted ※ 12 August 2021 — Issue date ※ 05 May 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPFAV006 The Superconducting Radio Frequency System of Shenzhen Industrial Synchrotron Radiation Source FacilityRIAL SYNCHROTRON RADIATION SOURCE FACILITY 392
 
  • W. Ma, Y.B. Sun, N. Yuan
    Sun Yat-sen University, Zhuhai, Guangdong, People’s Republic of China
  • L.G. Liu
    SSRF, Shanghai, People’s Republic of China
  • L. Lu, L. Yang, Z.L. Zhang
    IMP/CAS, Lanzhou, People’s Republic of China
 
  Shenzhen industrial synchrotron radiation source is a 3 GeV synchrotron radiation diffraction-limited source. It consists of three parts, linear accelerator, booster, and storage ring. As a basic part of the storage ring, the superconducting radio frequency system provides energy for the beam to supplement the beam power loss caused by synchrotron radiation and higher-order modes, and provide the longitudinal bunch for the electron beam. The superconducting radio frequency cavity of the storage ring consists of two 500 MHz single-cell cavities and a third harmonic 1500 MHz double-cell cavity. This paper will introduce the superconducting cavity, radio frequency amplifier, and low-level radio frequency system in the Shenzhen industrial synchrotron radiation source facility.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2021-TUPFAV006  
About • Received ※ 20 June 2021 — Revised ※ 16 August 2021 — Accepted ※ 21 August 2021 — Issue date ※ 26 November 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
SUPCAV010 Design of Third-Harmonic Superconducting Cavity for Shen-Zhen Industry Synchrotyon Radiation Source7 32
 
  • N. Yuan, L. Lu, W. Ma
    Sun Yat-sen University, Zhuhai, Guangdong, People’s Republic of China
  • L.G. Liu
    SINAP, Shanghai, People’s Republic of China
  • L. Yang, Z. Zhang
    IMP/CAS, Lanzhou, People’s Republic of China
 
  Shenzhen industry synchrotron radiation source is the fourth generation of medium energy light source with beam energy of 3GeV. It has the characteristics of low emittance and high brightness. In the design, the beam lifetime is one of the most important parameters. The main factor that affects its beam lifetime is the scattering of electron collisions inside the beam. To solve this problem, a harmonic radio frequency system is used. The third harmonic superconducting elliptical cavity is de-signed to stretch beam length to improve beam quality and beam lifetime. The present work is mainly about the shape optimization of 1.5 GHz 2-cell third harmonic superconducting elliptical cavity. Firstly, the principle of harmonic cavity in dual high frequency system is introduced, and the resonant frequency and acceleration gradient of superconducting cavity are given. Then, CST, electromagnetic field simulation software is used to optimize the cavity parameters to obtain the high performance and high frequency parameters that meet the requirements.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2021-SUPCAV010  
About • Received ※ 21 June 2021 — Revised ※ 21 November 2021 — Accepted ※ 18 February 2022 — Issue date ※ 03 May 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)