Author: Matveenko, A.N.
Paper Title Page
WEPTEV003 A Superconducting Magnetic Shield for SRF Modules with Strong Magnetic Field Sources 637
  • J. Völker, A. Frahm, S. Keckert, J. Knobloch, A.N. Matveenko, A. Neumann, H. Plötz, Y. Tamashevich
    HZB, Berlin, Germany
  • J. Knobloch
    University of Siegen, Siegen, Germany
  Frequently SRF modules require strong focusing magnets close to SRF cavities. The shielding of those magnetic fields to avoid flux trapping, for example during a quench, is a challenge. At HZB, the bERLinPro photo-injector module includes a 1.4 cell SRF cavity placed in close proximity to a superconducting (SC) focusing solenoid. At full solenoid operation, parts of the double mu-metal shield are expected to saturate. To prevent saturation, we developed a new superconducting Meissner-Shield. Several tests of different designs were performed both in the injector module and in the HoBiCaT test facility. The measured results of the final design show a significant shielding that are in good agreement with calculations. Based on these results, a reduction of the magnetic flux density in the mu-metal shields of almost one order of magnitude is expected The design has now been incorporated in the injector module. In this paper we will present the design, the setup and results of the final testing of the superconducting shield.  
poster icon Poster WEPTEV003 [1.854 MB]  
DOI • reference for this paper ※  
About • Received ※ 21 June 2021 — Revised ※ 16 August 2021 — Accepted ※ 21 August 2021 — Issue date ※ 15 March 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
Damage Recovery for SRF Photoinjector Cavities  
  • Y. Tamashevich, A. Frahm, F. Göbel, S. Heling, A. Hellwig, K. Janke, S. Klauke, J. Knobloch, A.N. Matveenko, A. Neumann, H. Plötz, A.L. Prudnikava, S. Rotterdam, M. Schuster, J. Ullrich
    HZB, Berlin, Germany
  Two niobium elliptical 1.3 GHz SRF electron photoinjector cavities were successfully recovered after mechanical inner surface damage. Both injector cavities had deep imprints in critical high surface electric field area around the photoelectric cathode position. The repairing procedure, consisting of surface inspection, mechanical polishing and light chemical etching is described in detail. Subsequent cold RF tests demonstrate complete performance recovery.  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)