Author: Reece, C.E.
Paper Title Page
SUPTEV011 Nb3Sn Coating of Twin Axis Cavity for SRF Applications 146
 
  • J.K. Tiskumara, J.R. Delayen
    ODU, Norfolk, Virginia, USA
  • G.V. Eremeev
    Fermilab, Batavia, Illinois, USA
  • U. Pudasaini, C.E. Reece
    JLab, Newport News, Virginia, USA
 
  The twin axis cavity with two identical accelerating beams has been proposed for energy recovery linac (ERL) applications. Nb3Sn is a superconducting material with a higher critical temperature and a higher critical field as compared to Nb, which promises a lower operating cost due to higher quality factors. Two niobium twin axis cavities were fabricated at JLab and were proposed to be coated with Nb3Sn. Due to their more complex geometry, the typical coating process used for basic elliptical cavi-ties needs to be improved to coat these cavities. This development advances the current coating system at JLab for coating complex cavities. Two twin axis cavities were coated recently for the first time. This contribution dis-cusses initial results from coating of twin axis cavities, RF testing and witness sample analysis with an overview of the current challenges towards high performance Nb3Sn coated twin axis cavities.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2021-SUPTEV011  
About • Received ※ 22 June 2021 — Revised ※ 19 December 2021 — Accepted ※ 21 February 2022 — Issue date ※ 01 April 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTEV014 New Improved Horizontal Electropolishing System for SRF Cavities 237
 
  • C.E. Reece, S. Castagnola, P. Denny, A.L.A. Mitchell
    JLab, Newport News, Virginia, USA
 
  Funding: This manuscript has been authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OThR23177.
The best performance of niobium SRF accelerating cavities is obtained with surfaces smoothed with electropolishing chemical finishing. Jefferson Lab has recently specified, procured, installed, and commissioned a new versatile production electropolishing (EP) tool. Experience with EP research and operations at JLab as well as vendor interactions and experience guided development of the system specification. Detailed design and fabrication was awarded by contract to Semiconductor Process Equipment Corporation (SPEC). The delivered system was integrated into the JLab chemroom infrastructure and commissioned in 2020. The new EP tool provides much improved heat exchange from the circulating H2SO4/HF electrolyte and also the cavity via variable temperature external cooling water flow, resulting in quite uniform cavity wall temperature control and thus improved removal uniformity. With the JLab infrastructure, stabilized process temperature as low as 5 C is available. We describe the system and illustrate operational modes in this contribution.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2021-MOPTEV014  
About • Received ※ 21 June 2021 — Revised ※ 08 July 2021 — Accepted ※ 19 August 2021 — Issue date ※ 31 March 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPCAV013 LCLS-II-HE Vertical Acceptance Testing Plans 291
 
  • J.T. Maniscalco, S. Aderhold, J.D. Fuerst, D. Gonnella
    SLAC, Menlo Park, California, USA
  • T.T. Arkan, M. Checchin, J.A. Kaluzny, S. Posen
    Fermilab, Batavia, Illinois, USA
  • J. Hogan, A.D. Palczewski, C.E. Reece, K.M. Wilson
    JLab, Newport News, Virginia, USA
 
  LCLS-II-HE has performance requirements similar to but generally more demanding than those of LCLS-II, with an operating gradient of 21 MV/m (up from 16 MV/m in LCLS-II) and tighter restrictions on field emission and multipacting. In this paper, we outline the requirements for the 1.3 GHz cavities and the plans for qualification of these cavities by vertical test. We discuss lessons learned from LCLS-II and highlight the changes implemented in the vertical test procedure for the new project.  
poster icon Poster MOPCAV013 [0.413 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2021-MOPCAV013  
About • Received ※ 21 June 2021 — Revised ※ 12 July 2021 — Accepted ※ 21 August 2021 — Issue date ※ 02 May 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPFDV002 SIMS Sample Holder and Grain Orientation Effects 401
 
  • J.W. Angle, M.J. Kelley
    Virginia Polytechnic Institute and State University, Blacksburg, USA
  • M.J. Kelley, E.M. Lechner, A.D. Palczewski, C.E. Reece
    JLab, Newport News, Virginia, USA
  • F.A. Stevie
    NCSU AIF, Raleigh, North Carolina, USA
 
  SIMS analyses for ’N-doped’ materials are becoming increasingly important. A major hurdle to acquiring quantitative SIMS results for these materials is the uncertainty of instrument calibration due to changes in sample height either from sample topography or from the sample holder itself. The CAMECA sample holder design allows for many types of samples to be analyzed. However, the cost is that the holder faceplate can bend, introducing uncertainty into the SIMS results. Here we designed and created an improved sample holder which is reinforced to prevent faceplate deflection and thereby reduce uncertainty. Simulations show that the new design significantly reduces deflection from 10 µm to 5 nm. Measurements show a reduction of calibration (RSF) uncertainty from this source from 4.1% to 0.95%. Grain orientation has long been suspected to affect RSF determination as well. A bicrystal implant standard consisting of [111] and [001] grains were repeatedly rotated 15° in between analyses. It was observed that 20% of the analyses performed on [111] grains exhibited anomalously high RSF values likely due to the changing of the grain normal with respect to the primary Cs+ beam.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2021-TUPFDV002  
About • Received ※ 21 June 2021 — Revised ※ 11 July 2021 — Accepted ※ 21 August 2021 — Issue date ※ 05 January 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPFDV004 A SIMS Approach for the Analysis of Furnace Contamination 406
 
  • J.W. Angle, M.J. Kelley
    Virginia Polytechnic Institute and State University, Blacksburg, USA
  • M.J. Kelley, E.M. Lechner, A.D. Palczewski, C.E. Reece
    JLab, Newport News, Virginia, USA
  • F.A. Stevie
    NCSU AIF, Raleigh, North Carolina, USA
 
  Detection of surface contamination for SRF material is difficult due to the miniscule quantities and near atomic resolution needed. Visual inspection of samples known to have experienced surface contamination were found to have inconsistent nitride coverage after nitrogen doping. EBSD analysis suggest that nitride suppression tends to be most prevalent when deviating from the [111] and [001] zone axes. XPS suggested that tin was present as a contaminant on the surface with SIMS mass spectra also confirming its presence. SIMS depth profiles show a depletion of nitrogen content as well as an increase in car-bon content for contaminated samples.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2021-TUPFDV004  
About • Received ※ 22 June 2021 — Revised ※ 11 July 2021 — Accepted ※ 21 August 2021 — Issue date ※ 19 February 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTEV013 Managing Sn-Supply to Tune Surface Characteristics of Vapor-Diffusion Coating of Nb3Sn 516
 
  • U. Pudasaini, C.E. Reece
    JLab, Newport News, Virginia, USA
  • J.K. Tiskumara
    ODU, Norfolk, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates under contract no. DE¬AC05¬06OR23177
Nb3Sn promises better RF performance (Q and Eacc) than niobium at any given temperature because of superior superconducting properties. Nb3Sn-coated SRF cavities are now produced routinely by growing a few microns thick Nb3Sn films inside Nb cavities via the tin vapor diffusion technique. Sn evaporation and consumption during the growth process notably affect the quality of the coating. Aiming at favorable surface characteristics that could enhance the RF performance, many coatings were produced by varying Sn sources and temperature profiles. Coupon samples were examined using different material characterization techniques, and a selected few sets of coating parameters were used to coat 1.3 GHz single-cell cavities for RF testing. The Sn supply’s careful tuning is essential to manage the microstructure, roughness, and overall surface characteristics of the coating. We summarize the material analysis of witness samples and discuss the performance of several Nb3Sn-coated single-cell cavities linked to Sn-source characteristics and observed Sn consumption during the film growth process.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2021-TUPTEV013  
About • Received ※ 21 June 2021 — Revised ※ 09 October 2021 — Accepted ※ 15 December 2021 — Issue date ※ 22 February 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPFDV003 SIMS Investigation of Furnace Baked Nb 761
 
  • E.M. Lechner, M.J. Kelley, A.D. Palczewski, C.E. Reece
    JLab, Newport News, Virginia, USA
  • J.W. Angle, M.J. Kelley
    Virginia Polytechnic Institute and State University, Blacksburg, USA
 
  Funding: U.S. DOE Contract No. DE-AC05-06OR23177
Results recently published by Ito et al. showed that "furnace baking" Nb SRF cavities after electropolishing yields high quality factors and anti-Q-slopes resembling that of N doped cavities. Small Nb samples were prepared following the recipe outlined by Ito. These samples were measured by SIMS to examine impurity contributions to the RF penetration layer. These diffusion profiles are modeled, and their consequences on RF properties discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2021-THPFDV003  
About • Received ※ 22 June 2021 — Accepted ※ 24 November 2021 — Issue date; ※ 15 May 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPCAV008 Results From the Proton Power Upgrade Project Cavity Quality Assurance Plan 801
 
  • J.D. Mammosser, E. Robertson
    ORNL RAD, Oak Ridge, Tennessee, USA
  • R. Afanador, M.S. Champion, M.N. Greenwood, M.P. Howell, S.-H. Kim, S.E. Stewart, D.J. Vandygriff
    ORNL, Oak Ridge, Tennessee, USA
  • A. Bitter, K.B. Bolz, A. Navitski, L. Zweibaeumer
    RI Research Instruments GmbH, Bergisch Gladbach, Germany
  • E. Daly, G.K. Davis, P. Dhakal, D. Forehand, K. Macha, C.E. Reece, K.M. Wilson
    JLab, Newport News, Virginia, USA
 
  Funding: UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE)
The Proton Power Upgrade (PPU) Project at Oak Ridge National Lab’s Spallation Neutron Source (SNS) is currently under construction. The project will double the beam power from 1.4 to 2.8 MW. This is accomplished by increasing the beam current and adding seven new Superconducting Radio Frequency (SRF) cryomodules. Each new cryomodule will contain four six-cell, beta 0.81, PPU style cavities. A quality assurance plan was developed and implemented for the procurement of 32 PPU cavities. As part of this plan, reference cavities were qualified and sent to Research Instruments Co. for the development and verification of process steps. Here we present the results from this plan to date.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2021-THPCAV008  
About • Received ※ 04 June 2021 — Accepted ※ 06 September 2021 — Issue date; ※ 16 May 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPCAV009 Statistical Modeling of Peak Accelerating Gradients in LCLS-II and LCLS-II-HE 804
 
  • J.T. Maniscalco, S. Aderhold, J.D. Fuerst, D. Gonnella
    SLAC, Menlo Park, California, USA
  • T.T. Arkan, M. Checchin, J.A. Kaluzny, S. Posen
    Fermilab, Batavia, Illinois, USA
  • J. Hogan, A.D. Palczewski, C.E. Reece, K.M. Wilson
    JLab, Newport News, Virginia, USA
 
  In this report, we study the vertical test gradient performance and the gradient degradation between vertical test and cryomodule test for the 1.3 GHz LCLS-II cavities. We develop a model of peak gradient statistics, and use our understanding of the LCLS-II results and the changes implemented for LCLS-II-HE to estimate the expected gradient statistics for the new machine. Finally, we lay out a plan to ensure that the LCLS-II-HE cryomodule gradient specifications are met while minimizing cavity disqualification by introducing a variable acceptance threshold for the accelerating gradient.  
poster icon Poster THPCAV009 [1.306 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2021-THPCAV009  
About • Received ※ 21 June 2021 — Revised ※ 14 September 2021 — Accepted ※ 02 November 2021 — Issue date ※ 23 November 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTEV012 Substitution of Spring Clamps for Bolts on SRF Cavity Flanges to Minimize Particle Generation 853
 
  • G.H. Biallas
    Hyperboloid LLC, Yorktown, Virginia, USA
  • E. Daly, K. Macha, C.E. Reece
    JLab, Newport News, Virginia, USA
 
  Funding: Funding supplied by US Department of Energy SBIR Grant #DE-SC0019579
Hyperboloid LLC developed and successfully tested a System of High Force Spring Clamps to substitute, one for one, for bolts on the flanges of SRF Cavities. The Clamps are like exceptionally forceful binder clips. The System, that includes the Hydraulic Openers that apply the clamps, minimizes generation of particulates when sealing cavity flanges. Hyperboloid LLC used ANSYS to design the titanium clamps that generate the force to seal the hexagonal cross section, relatively hard aluminum gasket developed for TESLA and used at JLab and other accelerators. The System is developed to be suitable for use in SRF Clean Rooms. Results of particle counter readings during bolt and clamp installation and superfluid helium challenges to the sealed flanges are discussed. Results of a half-size clamp that could seal a soft aluminum gasket and the attempt to seal a gasket made of niobium are also discussed.
L. Monaco, P. Michelato, C. Pagani, N. Panzeri, Experimental and Theoretical Analysis of Tesla-like SFRF Cavity Flanges, INFN Milano- LASA, I-20090 Segrate (MI), Italy. Proc. EPAC 2006, Edinburgh, SC
 
poster icon Poster THPTEV012 [1.400 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2021-THPTEV012  
About • Received ※ 21 June 2021 — Revised ※ 16 December 2021 — Accepted ※ 28 April 2022 — Issue date ※ 01 May 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTEV017 Status of the LCLS-II HE Project at Jefferson Lab 876
 
  • K.M. Wilson, J. Hogan, M. Laney, A.D. Palczewski, C.E. Reece
    JLab, Newport News, Virginia, USA
 
  Funding: This work was supported by the U.S. Department of Energy Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177 (JSA); and for BES under contract DE’AC02’76SF00515 (SLAC).
The Linac Coherent Light Source II High Energy (LCLS-II-HE) upgrade at the SLAC National Accelerator Laboratory is being constructed in partnership with the Thomas Jefferson National Accelerator Facility (JLab) and the Fermi National Accelerator Laboratory (FNAL). The cryomodule production scope consists of the design, procurement, construction, and acceptance testing of 24 eight-cavity, 1.3 GHz cryomodules, as well as R&D activities necessary to develop the required technology. To achieve this, JLab and FNAL are also contributing to SLAC’s effort to develop the cavity recipe and production processes necessary to meet the LCLS-II-HE goal of 20.8 MV/m and average Q0 of 2.7·1010. This paper details the JLab scope, focusing on the project initiation phase, in particular technology development and prototyping, project development and planning, and implementation of lessons learned from LCLS-II.
 
poster icon Poster THPTEV017 [1.531 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2021-THPTEV017  
About • Received ※ 21 June 2021 — Revised ※ 12 August 2021 — Accepted ※ 02 March 2022 — Issue date ※ 01 May 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FROFDV02
A Novel Approach to Producing High Gradient and Q0 Cavities in Non-Ideal Furnaces  
 
  • A.D. Palczewski, P. Dhakal, C.E. Reece
    JLab, Newport News, Virginia, USA
  • D. Gonnella
    SLAC, Menlo Park, California, USA
 
  Funding: Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
Since the discovery of nitrogen doping in 2014, infusion in 2017, "mid-T bakes in 2018; the reproducibility in both Q0 and gradient has been proven to be highly variable between facilities and even within the same furnace within a facility*. Multiple studies have pointed to possible contamination from pumps, non-Molybdenum frame outgassing within a hot zone, gas purity issues, and cross-contamination between furnace runs. The traditional approach to mitigating these effects is using niobium furnace caps, high-temperature furnace burnout runs, and expensive pump replacements. We will show multiple examples of a novel approach to increasing Q0 and Q0+Eacc, using a simple treatment after a furnace treatment or doping + light EP. We will also outline the possible workflows using this new technique in production.
*Pashupati Dhakal, https://doi.org/10.1016/j.physo.2020.100034, and enclosed citations.
 
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)