Keyword: factory
Paper Title Other Keywords Page
TUPFAV002 Calibration of SRF Cavity Voltage by Measurement of Synchrotron Frequency in SuperKEKB cavity, operation, SRF, pick-up 376
 
  • M. Nishiwaki, K. Akai, T. Furuya, T. Kobayashi, S. Mitsunobu, Y. Morita, T. Okada
    KEK, Ibaraki, Japan
 
  Eight SRF cavity modules, which have been operated in KEKB for more than ten years, are stably operating also in SuperKEKB. As for calibration of the cavity voltage Vc, non-negligible discrepancy was observed between the results obtained from two different methods: one is using external Q value (Qext) of pickup ports, and the other is using loaded Q value (QL) of the cavities. The discrepancy comes from inaccuracy of power measurement in high power RF system and uncertainty of the Qext or QL values. In order to solve the discrepancy by improving the accuracy of the calibration for each individual cavity, we investigated a method by measuring synchrotron frequency fs of stored beam. With this method, Vc calibration can be performed without affected by inaccuracy of high-power measurement or uncertainty of the Qext or QL values. The fs measurement studies were carried out in SuperKEKB. With these studies, Vc calibration was obtained with a high accuracy of about 1%. The results are applied to the SuperKEKB operation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2021-TUPFAV002  
About • Received ※ 21 June 2021 — Revised ※ 13 August 2021 — Accepted ※ 21 August 2021 — Issue date ※ 14 October 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPCAV010 Application of the ASME Boiler and Pressure Vessel Code in the Design of SRF Cavities at Fermilab cavity, SRF, GUI, niobium 460
 
  • C.S. Narug, M. Parise, D. Passarelli
    Fermilab, Batavia, Illinois, USA
 
  Funding: This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.
Jacketed Superconducting Radio Frequency (SRF) cavities structurally comprise of an inner niobium vessel surrounded by a liquid helium containment vessels. The pressure of the helium bath and/or its volume might be such that a jacketed SRF cavity shall be considered a system of pressure vessels. Thus, methods described in the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (BPVC) should be used to analyze the structural soundness of jacketed SRF cavities. This paper will report the use of the set of rules developed at Fermilab for the design of SRF cavities, such as jacketed 1.3 GHz cavities for LCLS-II HE and jacketed Single Spoke Resonator type~2 (SSR2) for PIP-II, to ensure a similar level of safety as prescribed by the ASME BPVC.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2021-TUPCAV010  
About • Received ※ 22 June 2021 — Accepted ※ 23 August 2021 — Issue date; ※ 12 December 2021  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)