Keyword: lattice
Paper Title Other Keywords Page
SUPFDV012 The Development of HiPIMS Multilayer SIS Film Coatings on Copper for SRF Applications site, cavity, SRF, shielding 86
 
  • S.B. Leith, X. Jiang, A.O. Sezgin, M. Vogel
    University Siegen, Siegen, Germany
  • B. Butz, Y. Li, J. Müller
    MNaF, Siegen, Germany
  • S. Keckert, J. Knobloch, O. Kugeler, D.B. Tikhonov
    HZB, Berlin, Germany
  • J. Knobloch
    University of Siegen, Siegen, Germany
  • R. Ries, E. Seiler
    Slovak Academy of Sciences, Institute of Electrical Engineering, Bratislava, Slovak Republic
 
  Funding: Authors acknowledge both the EASITrain, Marie Sklodowska-Curie Action (MSCA) Innovative Training Network (ITN), Grant Agreement no. 764879 and the ARIES collaboration, Grant Agreement no. 730871
In recent years, the use of alternatives to bulk Nb in the fabrication of SRF cavities, including novel materials and/or fabrication techniques, have been extensively explored by the SRF community. One of these new methodologies is the use of a superconductor-insulator-superconductor (SIS) multilayer structure. Typically, these have been envisaged for use with bulk Nb cavities. However, it is conceivable to combine the benefits of SIS structures with the benefits of coated Cu cavities. It is also clear that the use of energetic deposition techniques such as high power impulse magnetron sputtering (HiPIMS), provide significant benefits over typical DC magnetron sputtering (MS) coatings, in terms of SRF performance. In light of this, two series of multilayer SIS film coatings, with a Nb-AlN-NbN structure, were deposited onto electropolished OFHC Cu samples, with the use of HiPIMS, in order to determine the efficacy of this approach. This contribution details the development of these coatings and the required optimization of the coating parameters of the separate material systems, through the use of multiple material and superconducting characterization techniques.
 
poster icon Poster SUPFDV012 [2.056 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2021-SUPFDV012  
About • Received ※ 20 June 2021 — Accepted ※ 21 December 2021 — Issue date; ※ 27 April 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
SUPFDV013 HiPIMS NbN Thin Film Development for Use in Multilayer SIS Films site, cathode, ECR, cavity 91
 
  • S.B. Leith, B. Bai, X. Jiang, M. Vogel
    University Siegen, Siegen, Germany
  • R. Ries, E. Seiler
    Slovak Academy of Sciences, Institute of Electrical Engineering, Bratislava, Slovak Republic
 
  Funding: Authors acknowledge both the EASITrain, Marie Sklodowska-Curie Action (MSCA) Innovative Training Network (ITN), Grant Agreement no. 764879 and the ARIES collaboration, Grant Agreement no. 730871
As part of efforts to improve the performance of SRF cavities, the use of alternative structures, such as superconductor-insulator-superconductor (SIS) film coatings have been extensively investigated. Initial efforts using DC magnetron sputtering (MS) deposited NbN films showed the efficacy of this approach. The use of energetic condensation methods, such as high power impulse magnetron sputtering (HiPIMS), have already improved the performance of Nb thin films for SRF cavities and have already been used for nitride film coatings in the tool industry. In this contribution, the results from the deposition of HiPIMS NbN thin films onto oxygen free high conductivity (OFHC) Cu substrates are presented. The effects of the different deposition parameters on the deposited films were elucidated through various characterisation methods, resulting in an optimum coating procedure. This allowed for further comparison between the HiPIMS NbN films and the previously presented DC MS NbN films. The results indicate the improvements offered by HiPIMS deposition, most notably, the significant increase in the entry field, and its applicability to the deposition of SIS films on Cu.
 
poster icon Poster SUPFDV013 [0.918 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2021-SUPFDV013  
About • Received ※ 20 June 2021 — Revised ※ 08 July 2021 — Accepted ※ 12 August 2021 — Issue date ※ 25 October 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPFDV010 MICROSTRUCTURE CHANGES OBSERVED IN THE NEAR-SURFACE REGION OF SRF Nb CAVITIES CUTOUTS UPON COOLING/HEATING CYCLES USING GI-SYNCHROTRON XRD site, cavity, SRF, niobium 339
 
  • A. Cano, D. Bafia, A. Grassellino, J. Lee, M. Martinello, A.S. Romanenko, T. Spina, Z-H. Sung
    Fermilab, Batavia, Illinois, USA
  • E.A. Karapetrova
    ANL, Lemont, Illinois, USA
 
  We have mapped microstructural changes in the near-surface region of Nb from SRF cavity-cutouts upon thermal cycles in the range from 300 to 30K using grazing incidence synchrotron X-ray diffraction (GIXRD). Segregation of secondary phases was observed after the thermal cycle, and their nature has been clarified and discussed in view of previous studies on hydrides formation in SRF bulk Nb cavities. The temperature dependence of the relative population of these formed phases was obtained from GIXRD patterns profile fitting. Both, Nb bulk matrix and the new phases formed after cool-down show specific structural features as thermal contraction/expansion, structural transitions, and Nb lattice variation due to the induced strain by precipitates formation. The information derived from this structural study can explain some phenomena as the dissipation at high accelerating field (i.e. High Field Q Slope, HFQS) in the Nb SRF performance as well as new mechanisms never addressed in previous studies.
A Romanenko, F Barkov, LD Cooley, A Grassellino, Proximity breakdown of hydrides in superconducting niobium cavities, Superconductor Science and Technology, 2013
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2021-MOPFDV010  
About • Received ※ 28 June 2021 — Revised ※ 12 August 2021 — Accepted ※ 21 August 2021 — Issue date ※ 23 September 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUOFDV03 Vacancy-Hydrogen Dynamics and Magnetic Impurities During Mid-T Bake cavity, niobium, interface, positron 342
 
  • M. Wenskat, C. Bate, D. Reschke, J. Schaffran, L. Steder, H. Weise
    DESY, Hamburg, Germany
  • C. Bate, G.D.L. Semione, A. Stierle
    University of Hamburg, Hamburg, Germany
  • M. Butterling, E. Hirschmann, M.O. Liedke, A. Wagner
    HZDR, Dresden, Germany
  • J. Cizek
    Charles University, Prague, Czech Republic
  • W. Hillert
    University of Hamburg, Institut für Experimentalphysik, Hamburg, Germany
 
  Positron annihilation measurements allow to study the hydrogen interaction with vacancies in a crystal lattice. Furthermore, the 3/2 ratio of the positronium annihilation can be used to identify local magnetic impurities in thin layers. Dynamic studies of these properties in annealing studies up to 300°C will be presented. The discussion is accompanied by X-ray reflectivity studies performed on single crystal samples to study the niobium oxide dissolution. The dynamics of magnetic impurities during a Mid-T bake will be presented, put into the context of cavity studies and a potential link to rf properties will be discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2021-TUOFDV03  
About • Received ※ 23 June 2021 — Revised ※ 12 July 2021 — Accepted ※ 21 August 2021 — Issue date ※ 05 December 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPFDV002 The Influence of Irradiation on the Current Carrying Phenomena in HTc Multilayered Superconductors induction, radiation, ECR, superconductivity 756
 
  • J. Sosnowski
    NCBJ, Świerk/Otwock, Poland
 
  Paper is devoted to analysis of the influence of irradiation arising in SRF accelerators on critical current phenomena of HTc multilayered superconductors. Impact of size and concentration of created then nano-defects on current-voltage characteristics and critical current of HTc superconductors as function of the magnetic field and temperature will be investigated. It will be studied basing on analysis of interaction of the magnetic pancake vortices with arising during irradiation defects, for various strengths of capturing. The comparison of the model with experimental data will be given too. The dynamic losses dependent on critical current, generated in the superconducting current leads for varying current, will be considered. Analysis of the dynamic magnetic induction distribution inside superconducting lead for time varying current in the cycle will be given and Joule losses estimated. As the result it has been established the hysteresis behavior of the losses in current leads. The changes of losses have been observed for first and following current increase, which effect should have meaning during multiply charging of the superconducting electromagnets.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2021-THPFDV002  
About • Received ※ 16 June 2021 — Revised ※ 10 August 2021 — Accepted ※ 23 November 2021 — Issue date ※ 02 March 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)