Keyword: linear-dynamics
Paper Title Other Keywords Page
SUPFDV003 Effect of Mean Free Path on Nonlinear Losses of Trapped Vortices Driven by a RF Field Field cavity, ECR, radio-frequency, simulation 67
 
  • M.R.P. Walive Pathiranage, A.V. Gurevich
    ODU, Norfolk, Virginia, USA
 
  Funding: This work was supported by NSF under Grants PHY 100614-010 and PHY 1734075, and by DOE under Grant DE-SC 100387-020.
We report extensive numerical simulations on nonlinear dynamics of a trapped elastic vortex under rf field, and its dependence on electron mean free path li. Our calculations of the field-dependent residual surface resistance Ri(H) take into account the vortex line tension, the linear Bardeen-Stephen viscous drag and random distributions of pinning centers. We showed that Ri(H) decreases significantly at small fields as the material gets dirtier while showing field independent behavior at higher fields for clean and dirty limit. At low frequencies Ri(H) increases smoothly with the field amplitude at small H and levels off at higher fields. The mean free path dependency of viscosity and pinning strength can result in a nonmonotonic mean free path dependence of Ri, which decreases with li at higher fields and weak pinning strength.
 
poster icon Poster SUPFDV003 [1.339 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2021-SUPFDV003  
About • Received ※ 20 June 2021 — Accepted ※ 19 December 2021 — Issue date; ※ 09 April 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)