DYNAMIC TEMPERATURE MAPPING OF Nb$_3$Sn CAVITIES

R. D. Porter†, N. Banerjee, M. Liepe
Cornell Laboratory for Accelerator-Based Sciences and Education (CLASSE), Ithaca, NY 14853, USA

Abstract

Niobium-3 Tin (Nb$_3$Sn) is the most promising alternative material to niobium for SRF accelerator cavities. The material promises nearly twice the potential accelerating gradients (~ 100 MV/m in TESLA elliptical cavities), increased quality factors, and 4.2 K operation. Current state of the art Nb$_3$Sn cavities reach quality factors of 2·1010 at 4.2 K and have reached 24 MV/m. Determining the cause of the premature field limitation is the topic of ongoing research. Cornell University has recently developed a high-speed temperature mapping system that can examine cavity quench mechanisms in never before achieved ways. Here we present high-speed temperature map results of Nb$_3$Sn cavities and examine the quench mechanism and dynamic heating. We show an initial multipacting quench and sudden temperature jumps at multiple locations on the cavity.

INTRODUCTION

Niobium-3 Tin (Nb$_3$Sn) is the most promising alternative material for superconducting radiofrequency (SRF) accelerator cavities. Nb$_3$Sn has nearly twice the critical temperature ($T_c = 18$ K vs $T_c = 9.2$ K [1]) and nearly twice the superheating magnetic field ($H_{sh} \approx 425$ mT vs $H_{sh} \approx 220$ mT [2]) compared to niobium. This allows Nb$_3$Sn cavities to operate at 4.2 K (where refrigeration is more efficient) at high quality factors > 2·1010 (at 1.3 GHz) and potentially reach 96 MV/m in TESLA elliptical geometry cavities.

Cornell University has a leading program to create Nb$_3$Sn accelerator cavities [3–7]. Nb$_3$Sn is very brittle and must be formed in the final cavity shape. To accomplish this we utilize Sn vapor deposition: a fully formed Nb cavity is placed in an ultra-high vacuum furnace where SnCl$_2$ and Sn is vaporized, allowed to absorb into the surface and forms Nb$_3$Sn [6, 8]. Additional fabrication techniques such as Chemical Vapor Deposition, Sn-electroplating with thermal conversion, and Nb$_3$Sn sputtering are being pursued but have not reached the same level of performance [9–15]. After the Sn vapor deposition process our cavities are coated in 2 – 3 µm of Nb$_3$Sn.

Current Nb$_3$Sn cavities at Cornell University achieve a quality factor of 2 · 1010 at 4.2 K and a maximum accelerating gradients of ≈ 17 MV/m in 1.3 GHz TESLA elliptical cavities. The high quality factor at 4.2 K enables 4.2 K operation and even cryocooler operation [16–18]. The 17 MV/m maximum accelerating gradient is usable, but far below the theoretical limit. Similar accelerating gradients have been reached at JLab [19] and IMP [20], and recently reached 24 MV/m at FNAL [21]. The cause of premature Nb$_3$Sn cavity quench is the subject of ongoing research [4, 22, 23].

Temperature mapping has been used to examine quench. Figure 1 shows a quench map of a Nb$_3$Sn cavity indicating that quench is occurring at a localized spot. This cavity was cut up and the quench site was examined using microscopy, but no obvious quench candidate was observed. Nb$_3$Sn is sensitive to small defects and temperature maps only have a resolution of ≈ 1 cm making quench identification difficult.

Figure 1: A quench map of a Nb$_3$Sn cavity taken with the old temperature mapping system [4, 5]. The hot spot in the lower right indicates a localized thermal quench. Quench maps are acquired by allowing the cavity to quench many times and measuring each thermometer in series. Places that are on average hotter are likely the quench site. The plot is displayed as integrated temperature. White squares with red x’s indicate non-functional thermometers.

Additional experiments were conducted by D. L. Hall et al. where the quench site temperature alone was measured at 25 kfps as the cavity was charged and discharge. The results can be seen in Fig. 2. As the cavity charges we first see Ohmic heating, as expected, but then the temperature suddenly jumps up [5]. When the cavity discharges there are jumps back down, but there is hysteresis between the charge and discharge cycles. The cavity does not quench during the cycle. Furthermore, the jumps appear to be quantized. There has been much speculation as to the cause of the these jumps and how they might be related to quench [4, 23].

These experiments suggest valuable information about the Nb$_3$Sn quench mechanism could be revealed by time-resolved temperature mapping. The additional information could inform theoretical models of quench or rule out certain quench mechanisms.

Recently, Cornell University has developed a new high-speed temperature mapping system that can resolve the dynamics of RF dissipation [24]. This system samples the entire temperature map 50 kfps, fast enough to resolve cav-
Cavities

Figure 2: Temperature vs surface magnetic field at the quench site of an Nb$_3$Sn cavity as the cavity is charged and discharged [4]. Notice the sudden jumps in temperature even though the cavity does not quench.

ity quench. In addition, this system has very low noise, capable of resolving 15 µK temperature changes in the appropriate configuration (1.8 K with ≈ 10000 point averaging at 50 kHz). The high-frequency sampling and low noise could reveal additional dynamics in Nb$_3$Sn cavities.

Here we show high-speed/dynamic temperature mapping of Nb$_3$Sn cavities from Cornell University. These represent preliminary data taken during the commissioning of the temperature mapping system. We find that temperature jumps are widespread, occurring at numerous locations on Nb$_3$Sn cavities. We find that the first quench appears to be a multipacting quench then quickly moves to a localized spot.

EXPERIMENTAL SETUP

Two Nb$_3$Sn cavities were tested: LTE1-9 (TESLA geometry) and ERL1-4 (modified TESLA geometry). These cavities received standard Nb$_3$Sn coatings [8]. Both cavities were tested during the commissioning of the new temperature mapping system. The testing of LTE1-9 was conducted first and some of the data is incomplete or corrupted due to faults in the new system. These faults were fixed before testing ERL1-4. Here we will primarily show data from ERL1-4.

The test system consists of a vertical test pit for testing superconducting RF cavities and a temperature mapping system [24]. Figure 3 shows the T-map on the cavity and a partially removed T-map showing sensor locations. Cernox sensors, fluxgate magnetometers (at top iris), and all standard equipment for RF testing at Cornell is also connected [4]. Due to physical constraints no sensors (other than T-map thermometer) are placed on the cavity equator. Instead, a Cernox sensor is placed near the equator on a T-map board. The T-map data acquisition system is connected to the trigger output of an RF Power Meter to allow simultaneous acquisition of RF and T-map data.

The temperature map consists of 38 boards each with 17 sensors giving 646 thermometers. In addition, 3 sensors are mounted on the boards that do not contact the cavity.

MEASUREMENTS AND DISCUSSION

Temperature Jumps

We can conduct a similar experiment to those conducted by D. L. Hall et al. on Nb$_3$Sn cavities [4, 5]. ERL1-4 was cooled to 1.8 K. The cavity was charged and discharged over a 50 s window while recording the T-map at 25 ksp. The T-map is triggered when the power to the cavity is turned on. We repeated this process many times, gradually raising the forward power—and thus the maximum field in the cavity—until the cavity quenched. The last iteration before quench was conducted at ≈ 0.09 MV/m ± 0.01 MV/m below the quench field.

Figure 4 shows one thermometer where temperature jumps were observed. As the cavity is charged a nearly linear (vs the field squared) rise in temperature seen then a sudden jump in temperature. As the cavity discharged, we see the opposite (jump down in temperature) but there is a hysteresis. This is similar behavior to that shown by to D. L. Hall et al..

These temperature jumps were observed at many locations on the cavity. Figure 5 marks all thermometers that saw temperature jumps at 1.8 K. There at 59 channels in all. These jumps are of different heights and some channels contain multiple jumps.

Not all temperature jumps are independent: some jumps occur at near-identical timing on adjacent sensors. Thermal
spread from a single heat source could be warming multiple temperature sensors. We conducted calculations of the thermal distribution of a point heat source in a Nb$_3$Sn on Nb system. This was done using a version of Cornell’s HEAT code [25] modified for multilayer materials. HEAT is a script for solving the equilibrium temperature distribution in SRF cavities and includes BCS resistance, Kapitza resistance, and other temperature dependent phenomena relevant to SRF cavities. Figure 6 shows results (at outer wall) from a thermal simulation of a point heat source (on inner wall) at 2 K and 17 MV/m. At the spacing of our thermometers (≈ 1 cm) the temperature rise drops to ≈ 10% and still measurable by our system. This shows that some adjacent sensors are likely measuring the same temperature jump.

Figure 6: Calculated radial temperature distribution of point thermal defect in a Nb$_3$Sn cavity as measured from the outer wall. Calculation performed with a bath temperature of 2 K, 8 nΩ of residual surface resistance, and an accelerating gradient of 17 MV/m.

Some thermometers in the temperature map show very little heating (before quench and at 1.8 K). This may be a result of a distribution of residual resistance on the surface or that some sensors have particularly low sensitivity at low temperatures. Low sensitivity sensors may not be able to read temperature jumps below the liquid helium transition point. At 4.2 K, where the helium thermal interface conductance is lower, thermometers read increased heating and additional channels appear to show temperature jumps; however, more measurements and analysis is needed at temperatures above helium transition point to draw a firm conclusion.

Curiously, while D. L. Hall et al. observed temperature jumps at the quench site, we did not. This may not indicate a lack of jumps or that jumps are unrelated to quench. One possible explanation is that the first jump to occur was large enough to cause the cavity to quench. Figure 7 shows the distribution of jump heights that were seen in this cavity. Thermal simulations suggest a measured (including approximate thermometer wall sensitivity) temperature jump of 10 – 30 mK would likely cause cavity quench. The largest jump seen so far is 6 mK (see Fig. 1), so this is a plausible explanation.
Figure 7: Histogram of the temperature jump magnitudes seen in ERL1-4.

(a) L TE1-9.
(b) ERL1-4.

Figure 8: A frame from a quench T-map video of both L TE1-9 and ERL1-4. These show what appears to be a multipacting quench.

Quench Video

Using the new system, we can record the temperature map as the cavity goes through quench. Figure 8 shows a frame from a T-map video of cavities LTE1-9 and ERL1-4 going through their first quench (after cooldown). Both quenches take place over ~50 ms and at 17 MV/m. The quench is not localized and is spread preferentially along the equator. The quench did not originate in one spot and spread but turned on across the entire region. This is likely a multipacting quench.

Previous T-maps using non-time-resolved systems showed a different behavior. Figure 1 shows a quench map of a previously measured Nb$_3$Sn cavity. The quench region is highly localized and not at the equator. It is not a multipacting quench.

Quench Site Evolution

After the first cavity quench we continued to record the temperature as the cavity went through additional quenches. Figure 9 shows a T-map taken over the next 32 cavity quenches of ERL1-4. We can see that there are now two quench regions: along the equator, and at a localized spot.

Figure 9: A temperature map showing the average temperature while the cavity is quenched 32 times. Two different hot spots emerge, indicating two quench locations. Two temperature vs time plots are overlayed for a thermometer in each quench region. Large temperature spikes indicate quench at or near the thermometer. Medium height temperature spikes indicate a quench that is still somewhat near (still on the equator). We can see that quench is moving between the equator and the hot spot in the lower left.

Time resolved thermometry reveals that the quenches move back and forth between the two sites. Quenches at the equator show some randomness in location and relative heating. The second site, however, has highly reproducible dynamics: the same location and relative intensities. After the first 33 quenches the quench site settled on the second, localized site. The next 100 quenches were recorded and all of them occurred at the second site. A possible explanation is that we processed the multipacting site and hit a defect at almost the exact same field, but more study is required.

This also reveals why the multipacting quench was not previously observed. The previous temperature mapping system measure a quench map over 100’s of quenches. Since only a handful of the first few quenches are multipacting we could only see the second site in these measurements.

CONCLUSION

Here we have shown the first time-resolved thermometry of niobium-3 tin (Nb$_3$Sn) SRF cavities. These are only preliminary results, but interesting dynamics are already revealed.

Temperature jumps, previously observed only at the cavity quench site, occur at many places across the cavity surface. Subsequent measurements will hopefully reveal properties that restrict the possible mechanism. We will soon conduct measurements on niobium cavities which will reveal if this phenomenon is part of the Nb$_3$Sn system or caused by...
another aspects of the system (thermometers, helium bath interface, etc.).

Measurements of cavity quench show new dynamics. The first cavity quench appears to be a multipacting quench. The quench site quickly transitions to a second, localized quench site. It is not clear why our Nb$_3$Sn cavities would be vulnerable to multipacting. Previous measurements found the secondary electron yield of Nb$_3$Sn is only slightly higher than that of niobium [26]. However, fabrication techniques and processing may impact Nb-Sn ratio, oxides, and adsorbs layers which may impact the secondary electron yield. Moving forward both quench mechanisms may need to be investigated to advance Nb$_3$Sn cavity accelerating gradients.

REFERENCES

